Umbilical Cord Blood and Type 1 Diabetes

نویسنده

  • David Bleich
چکیده

I t is our anticipation and hope that stem cells will cure type 1 diabetes someday because of their limitless capacity to differentiate as needed into the vital tissue or organ. In theory, pluripotent cells have the capacity to reprogram a hostile immune response to tolerate pancreatic -cells and to regenerate pancreatic -cell mass. These two factors are the necessary ingredients for reversing type 1 diabetes. However, in practice there are many unanswered scientific questions that need clarification before we claim success. In this issue of Diabetes Care, Haller et al. (1) report their interim results about autologous umbilical cord blood infusion into young children with type 1 diabetes. Children aged 1 year who developed type 1 diabetes and had banked umbilical cord blood at an approved center were recruited into this study at the University of Florida. Cord blood infusion was performed after the diagnosis of type 1 diabetes at a mean time of 4.1 months (range 2.5–7.1) and into children with a mean age of 5.5 years (3.1–7.3). The children were brought back for clinical, metabolic, and immunologic evaluation at 3, 6, 9, and 12 months after umbilical cord blood transfusion. Ethics considerations prevented infusion of umbilical cord blood into an age-matched nondiabetic control group, so an age-matched group of type 1 diabetic subjects was used for comparison. This constraint, although suboptimal, will be necessary in future stem cell type 1 diabetes trials but should not significantly compromise our ability to interpret the study outcomes. The results of the present study are uniformly negative; umbilical cord blood infusion failed to improve C-peptide, insulin utilization, and A1C and did not increase regulatory T-cell (Treg) levels at 12 months. Assuming that the 24-month results will also fail to demonstrate efficacy in curing or ameliorating type 1 diabetes, how do we navigate the clinical complexities of stem cell trials for type 1 diabetes? Not only are there several potential cell sources that might be used for type 1 diabetes (e.g., mesenchymal stem cells, hematopoetic stem cells, adipose-derived stem cells, and umbilical cord blood), but we must also identify the appropriate conditions for expanding these cells, selecting the appropriate subpopulations of cells, and administering the proper cell dose. The rationale for testing umbilical cord blood in young children with type 1 diabetes is primarily related to safety. Indeed, the results to date suggest that umbilical cord blood infusion is without side effects and can be given safely to children with type 1 diabetes. The matter of efficacy is more problematic. The present study gives us a strong negative signal that simple umbilical cord blood infusion might not provide a road forward toward curing type 1 diabetes. Two important considerations need to be resolved before we can reach this final conclusion: 1) the dose of umbilical cord blood in this study might be suboptimal to reverse type 1 diabetes and 2) a transient rise in Tregs bearing CD4 CD25 surface markers was observed at 6 months after umbilical cord blood but not at 12 months. These two issues are interrelated because a suboptimal dose of umbilical cord blood might provide neither the critical mass of Tregs to control autoimmunity nor the requisite number of stem cells to increase pancreatic -cell mass. Improvements in cryopreservation techniques and expansion of umbilical cord blood stem cells prior to therapeutic infusion might overcome these problems in the future. Although at present we have no roadmap for the use of stem cells to reverse type 1 diabetes in children, two promising research discoveries might provide us with clues for future clinical trials. Recently, Zhao et al. (2,3) used human umbilical cord blood stem cells to reverse type 1 diabetes in nonobese diabetic (NOD) mice. These investigators developed coculture techniques by mixing nondiabetic human umbilical cord blood stem cells with NOD mouse spleen cells to generate an unconventional subset of Tregs bearing CD4 CD62L but not CD25 on the cell surface. These unconventional Tregs, when injected into diabetic NOD mice, reversed type 1 diabetes 75% of the time and stimulated pancreatic -cell regeneration. Conventional Tregs bearing CD4 CD25 FoxP3 (note FoxP3 is a transcription factor that demarcates functional Tregs) did not possess these regenerative properties. These unconventional CD4 CD62L cells could only be derived using purified human cord blood stem cells from healthy donors but not from type 1 diabetes donors (Y. Zhao, personal communication). Apparently, healthy umbilical cord blood possesses a critical stem cell population capable of reeducating and transforming diabetic regulatory cells into regenerative CD4 CD62L cells capable of reversing type 1 diabetes. Conversely, umbilical cord blood obtained from individuals who later developed type 1 diabetes does not contain this critical stem cell population and therefore might not be a useful source of regenerative cells. Although there is danger in extrapolating insights gained from studies in NOD mice to children with type 1 diabetes, this nevertheless might explain why the present study has failed so far. Maybe conventional Tregs bearing CD4 CD25 on their cell surface are the wrong regenerative cell population? In addition, Bluestone and colleagues (4) demonstrated that conventional polyclonal CD4 CD25 Tregs were minimally effective at reversing type 1 diabetes in NOD mice, but purified antigen-specific CD4 CD25 T-cells reversed type 1 diabetes in 60% of NOD mice. Here also, if we permit extrapolation from mouse to human, we encounter a potential problem with umbilical cord blood infusion in type 1 diabetic children because umbilical cord blood cells contain primarily polyclonal Tregs. Future stem cell trials for children with type 1 diabetes will inevitably lean on discoveries made in rodent models of the disease, inherent limitations notwithstanding. It behooves us to use our translational science wisely to sort out the limitless variables that are likely to complicate human stem cell trials for type 1 diabetes. In summary, the present study using umbilical cord blood infusion in children with newly diagnosed type 1 diabetes has E d i t o r i a l s

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Correlation between Type of Delivery and Umbilical Cord Blood Hemoglobin and Hematocrit in Full- Term Neonates

Introduction: Neonates with lower hemoglobin and Hematocrit are more at risk of iron deficiency anemia. This rate is influenced by several factors. Children's health can be improved by identifying these factors and taking appropriate actions. This study determined the relationship between type of delivery and umbilical cord blood hemoglobin and Hematocrit. Methods: This descriptive correlation...

متن کامل

Autologous Umbilical Cord Blood Transfusion in Very Young Children With Type 1 Diabetes

OBJECTIVE Interest continues to grow regarding the therapeutic potential for umbilical cord blood therapies to modulate autoimmune disease. We conducted an open-label phase I study using autologous umbilical cord blood infusion to ameliorate type 1 diabetes. RESEARCH DESIGN AND METHODS Fifteen patients diagnosed with type 1 diabetes and for whom autologous umbilical cord blood was stored unde...

متن کامل

Decreased Cord-Blood Phospholipids in Young Age–at–Onset Type 1 Diabetes

Children developing type 1 diabetes may have risk markers already in their umbilical cord blood. It is hypothesized that the risk for type 1 diabetes at an early age may be increased by a pathogenic pregnancy and be reflected in altered cord-blood composition. This study used metabolomics to test if the cord-blood lipidome was affected in children diagnosed with type 1 diabetes before 8 years o...

متن کامل

Onm-19: The Role of Cord Blood Preservationin Cell Therapy

s:3604:"During pregnancy, the placenta delivers "cord blood" to the baby through the umbilical cord serving as a lifeline of nourishment from the mother to baby. At birth, "cord blood" remains in the umbilical cord and placenta and until recently, had typically been discarded. The tragedy of this practice is that "cord blood" contains very special cells called "stem cells". Recent advances in m...

متن کامل

Research using autologous cord blood - time for a policy change.

• Type 1 diabetes results from the loss of normal immunological self-tolerance, which may be attributable to the failure of Foxp3+ regulatory T cells (Tregs). Umbilical cord blood is rich in Tregs and therefore has the potential to prevent or delay the onset of type 1 diabetes. A pilot trial is currently underway in Australia to examine whether infusion of autologous cord blood can prevent type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2009